Inka Kaufmann Alves

A mathematical approach to find long-term strategies for the implementation of resource orientated sanitation
Focus and Background

- **Industrialised / developed countries**
 - High standard of water supply and disposal
 - (water) infrastructure already built

- **Urban Water Management**
 - regional water and nutrient cycle
 - technical aspects

- **Transformation of existing water infrastructures**
 - problems resulting e.g. from demographic and climate change cause a conceptual alteration in urban water management
 - from predominantly centralised end-of-pipe solutions
 - towards more resource orientated closed-loop systems
Focus and Background

- **How** can sustainable drainage and sanitation devices be implemented in existing systems in an optimal way?
 - extensive financial and construction efforts
 - a conversion can only be realised successively over a long period

Development of optimised strategies for transformation → mathematical approach
Mathematical Model

Initial situation
- Present state
 - Analysis
 - Evaluation
- Activities
 - Useful life-span
 - Installation period
 - Economical costs
 - Functioning
 - Standards in regulations
 - Environment
 - Ecological costs
- Impact
- Network feasibility
 - Balances
- Optimised strategy for realisation

Mathematical model
- Choice of activities
 - Optimal choice and combination of activities to reach future state
 - Determination of temporal and spatial sequence of activities with minimal costs and impact

Aim
Mathematical Model

- **Initial Situation**
 - Present State
 - Analysis
 - Evaluation
 - Constraints
 - Requirements
 - Future State

- **Mathematical Model**
 - Activities
 - Installation period
 - Useful life-span
 - Economical costs
 - Functioning
 - Standards in regulations
 - Environment
 - Ecological costs

- **Objective Functions**
 - Precendence constraints
 - Network feasibility
 - Balances
 - Optimised strategy for realisation

- **Aim**
 - Choice of activities

Mathematical model for realisation of mini-misa-tion with constraints of economical costs, ecological costs, and useful life-span.
Application

- Suburb of Kaiserslautern: KL-Siegelbach
 - Rural catchment of 90 ha area
 - 3,000 inhabitants
 - heterogeneous forms of housing / use
 - 70% drained by combined sewer system (3 overflow devices), 30% drained by (modified) separate sewer systems
 - wastewater is transported to central WWTP of Kaiserslautern (220,000 p.e.)
 - effects on WWTP not included in this study
future state

future state and conditions

- example of future state for implementation
 - stormwater runoff and wastewater should not be mixed any more,
 achieve natural stormwater management
 - decentralised treatment of blackwater
 - greywater should be treated centrally in WWTP
objective functions

- **period of consideration**
 - 50 years of conversion + 30 years of ‘maintenance’
 - total project costs with 3 % interest rate
 - budget 2.5 million € / time step (5 years)

- **weights objective functions**
 - weight economic costs \(C(1) \) : ecologic costs \(C(2) \)
 - Scenario 0: 1 : 0
 - Scenario 1: 1 : 0.2
 - Scenario 2: 1 : 0.4
 - Scenario 3: 1 : 1
 - Scenario 4: 1 : 2
 - Scenario 5: 0 : 1
Results – objective function values

- **Ecologic costs C(2)**
 - different criteria (at present 11) count to these costs
 - main fields of criteria
 - adaption of natural water balance
 - resources protection
 - emissions
 - immission
 - each criterion is scaled to an interval from 0 (no detriment) to 1 (highest detriment)

The graph shows the relationship between economic costs and ecologic costs for different scenarios (S0 to S5). Each scenario has a different weightage of economic costs to ecologic costs:

- S0: C(1):C(2) = 1:0
- S1: C(1):C(2) = 1:0.2
- S2: C(1):C(2) = 1:0.4
- S3: C(1):C(2) = 1:1
- S4: C(1):C(2) = 1:2
- S5: C(1):C(2) = 0:1

The graph illustrates how the minimal economic costs change with different ecologic cost ratios.
Results – portions $C_i(2)$ of $C(2)$

- Economic costs [million €/5]
- Emissions [-]
- Immissions [-]
- Water balance [-]
- Resources protection [-]

Scenario S3
Scenario S5

Annotation: Ecologic costs of 16 would represent an extrapolation of the present state.
Results – time schedule

total period under consideration [years]

SC1
- SUDS
- transport
- DESAR

SC2
- SUDS
- transport
- DESAR

SC3
- SUDS
- transport

SC4
- SUDS
- transport
- DESAR

SC5
- SUDS
- transport
- DESAR

SC6
- SUDS
- transport
- DESAR
to reach one future state many different optimal strategies are possible:

- the subjective weighting of the two costs is essential
- it is also essential to specify which impact in C(2) has to be considered for an optimal transformation strategy
- only the discussion of local deciders with engineers can lead to definite choice of solution (→ difficult!)

→ potential of the approach in making possible to show all impacts in detail when calculating different scenarios
→ big potential for complex systems!